The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130913
PDF

Risk Prediction Applied to Global Software Development using Machine Learning Methods

Author 1: Hossam Hassan
Author 2: Manal A. Abdel-Fattah
Author 3: Amr Ghoneim

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 9, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Software companies aim to develop high-quality software projects with the best global resources at the best cost. To achieve this global software development (GSD), an approach should be used which adopts work on projects across multiple distributed locations, and this is also known as distributed development. When companies attempt to implement GSD, they face numerous challenges owing to the nature of GSD and its differences from traditional methods. The objectives of this study were to identify the top software development factors that affect the overall success or failure of a software project using exploratory data analysis to find relationships between these factors, and to develop and compare risk prediction models that use machine learning classification techniques such as logistic regression, decision tree, random forest, support vector machine, K-nearest neighbors, and Naive Bayes. The findings of this study are as follows: in GSD, the top 18 factors influencing the software project are listed; and experiments show that the logistic regression and random forest models provide the best results, with an accuracy of 89% and 85%, respectively, and an area under the curve of 73% and 71%, respectively.

Keywords: Global software development; distributed development; risk prediction model; machine learning

Hossam Hassan, Manal A. Abdel-Fattah and Amr Ghoneim, “Risk Prediction Applied to Global Software Development using Machine Learning Methods” International Journal of Advanced Computer Science and Applications(IJACSA), 13(9), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130913

@article{Hassan2022,
title = {Risk Prediction Applied to Global Software Development using Machine Learning Methods},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130913},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130913},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {9},
author = {Hossam Hassan and Manal A. Abdel-Fattah and Amr Ghoneim}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org