The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

A Comprehensive Review and Application of Interpretable Deep Learning Model for ADR Prediction

Author 1: Shiksha Alok Dubey
Author 2: Anala A. Pandit

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0130924

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 9, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Drug safety is a pressing need in today's healthcare. Minimizing drug toxicity and improving the individual’s health and society is the key objective of the healthcare domain. Drugs are clinically tested in laboratories before marketing as medicines. However, the unintended and harmful effects of drugs are called Adverse Drug Reactions (ADRs). The impact of ADRs can range from mild discomfort to more severe health hazards leading to hospitalization and in some cases death. Therefore, the objective of this research paper is to design a framework based on which research papers are collected from both ADR detection and prediction domain. Around 172 research articles are collected from the sites like ResearchGate, PubMed, etc. After applying the elimination criteria the author categorized them into ADR detection and prediction themes. Further, common data sources and algorithms as well as the evaluation metrics were analyzed and their contribution to their respective domains is stated in terms of percentages. A deep learning framework is also designed and implemented based on the research gaps identified in the existing ADR detection and prediction models. The performance of the deep learning model with two hidden layers was found to be optimum for ADR prediction and further, the non-interpretability part of the model is addressed using a global surrogate model. The proposed architecture has successfully addressed multiple limitations of existing models and also highlights the importance of early detection & prediction of adverse drug reactions in the healthcare industry.

Keywords: Drug safety; adverse drug reactions; early detection; deep learning; interpretable models

Shiksha Alok Dubey and Anala A. Pandit, “A Comprehensive Review and Application of Interpretable Deep Learning Model for ADR Prediction” International Journal of Advanced Computer Science and Applications(IJACSA), 13(9), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130924

@article{Dubey2022,
title = {A Comprehensive Review and Application of Interpretable Deep Learning Model for ADR Prediction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130924},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130924},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {9},
author = {Shiksha Alok Dubey and Anala A. Pandit}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org