The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Application based on Hybrid CNN-SVM and PCA-SVM Approaches for Classification of Cocoa Beans

Author 1: AYIKPA Kacoutchy Jean
Author 2: MAMADOU Diarra
Author 3: BALLO Abou Bakary
Author 4: GOUTON Pierre
Author 5: ADOU Kablan Jérôme

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0130927

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 9, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In our study, we propose a hybrid Convolutional Neural Network with Support Vector Machine (CNN-SVM) and Principal Component Analysis with support vector machine (PCA-SVM) methods for the classification of cocoa beans obtained by the fermentation of beans collected from cocoa pods after harvest. We also use a convolutional neural network (CNN) and support vector machine (SVM) for the classification operation. In the case of the hybrid model, we use a convolutional network as a feature extractor and the SVM is used to perform the classification operation. The use of PCA-SVM allowed for a reduction in image size while maintaining the main features still using the SVM classifier. Radial, linear and polynomial basis function kernels were used with various control parameters for the SVM, and optimizers such as the Stochastic Gradient Descent (SGD) algorithm, Adam, and RMSprop were used for the CNN softmax classifier. The results showed the robustness of the hybrid CNN-SVM model which obtained the best score with a value of 98.32% then the PCA-SVM based model had a score of 97.65% outperforming the standard CNN and SVM classification algorithms. Metrics such as accuracy, recall, F1 score, mean squared error (MSE), and MCC have allowed us to consolidate the results obtained from our different experiments.

Keywords: Support vector machine; convolutional neural network; cocoa beans; principal component analysis; hybrid method

AYIKPA Kacoutchy Jean, MAMADOU Diarra, BALLO Abou Bakary, GOUTON Pierre and ADOU Kablan Jérôme, “Application based on Hybrid CNN-SVM and PCA-SVM Approaches for Classification of Cocoa Beans” International Journal of Advanced Computer Science and Applications(IJACSA), 13(9), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130927

@article{Jean2022,
title = {Application based on Hybrid CNN-SVM and PCA-SVM Approaches for Classification of Cocoa Beans},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130927},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130927},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {9},
author = {AYIKPA Kacoutchy Jean and MAMADOU Diarra and BALLO Abou Bakary and GOUTON Pierre and ADOU Kablan Jérôme}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org