The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.01411144
PDF

A Comprehensive Review of Deep Learning Approaches for Animal Detection on Video Data

Author 1: Prashanth Kumar
Author 2: Suhuai Luo
Author 3: Kamran Shaukat

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 11, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Integrating deep learning techniques into computer vision application has ushered in a new era of automated analysis and interpretation of visual data. In recent years, a surge of interest has been witnessed in applying these methodologies towards detecting animals in video streams, promising transformative impacts on diverse fields such as ecology and agriculture. This paper presents an extensive and meticulous review of the latest deep-learning approaches employed for animal detection in video data. This study looks closely at ways to detect animals in videos using deep learning. This study explores various Deep learning methods for detecting many animals in multiple environments. The analysis also pays close attention to preparing the data, picking out important features, and reusing what has been learned from one task to help with another. In addition to highlighting successful methodologies, this review addresses the challenges and limitations inherent in these approaches issues such as limited data availability and adapting to technological advancements present significant hurdles. Recognising and understanding these challenges is crucial in shaping the future focus of research endeavours. Thus, this comprehensive review is an indispensable tool for anyone keen on employing these potent computer methods for animal detection in videos. It takes the latest ideas and shows where study can explore further to improve them. Furthermore, this comprehensive review has demonstrated that a more sustainable and balanced relationship between humans and animals can be achieved by harnessing the power of deep learning in animal detection. This research contributes to computer vision and holds immense promise in safeguarding biodiversity and promoting responsible land use practices, especially within agricultural domains. The insights from this study propel us towards a future where advanced technology and ecological harmony go hand in hand, ultimately benefiting both humans and the animal kingdom. The survey aims to provide a comprehensive overview of the cutting-edge developments in applying deep learning models for animal detection through cameras by elucidating the significance of these techniques in advancing the accuracy and efficiency of animal detection processes.

Keywords: Machine learning; deep learning; animal detection; convolutional neural networks; video-based; deep learning models

Prashanth Kumar, Suhuai Luo and Kamran Shaukat, “A Comprehensive Review of Deep Learning Approaches for Animal Detection on Video Data” International Journal of Advanced Computer Science and Applications(IJACSA), 14(11), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01411144

@article{Kumar2023,
title = {A Comprehensive Review of Deep Learning Approaches for Animal Detection on Video Data},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01411144},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01411144},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {11},
author = {Prashanth Kumar and Suhuai Luo and Kamran Shaukat}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org