The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0141117
PDF

An Edge Computing-based Handgun and Knife Detection Method in IoT Video Surveillance Systems

Author 1: Haibo Liu
Author 2: Zhubing HU

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 11, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Real-time handgun and knife detection on edge devices within the Internet of Things (IoT) video surveillance systems hold paramount importance in ensuring public safety and security. Numerous methods have been explored for handgun and knife detection in video-based surveillance systems, with deep learning-based approaches demonstrating superior accuracy compared to other methods. However, the current research challenge lies in achieving high accuracy rates while managing the computational demands to meet real-time requirements. This paper proposes a solution by introducing a single-stage convolutional neural network (CNN) model tailored to address this challenge. The proposed method is developed using a custom dataset, encompassing model generation, training, validation, and testing phases. Extensive experiments and performance evaluations substantiate the efficacy of the proposed approach, which achieves remarkable accuracy results, thus showcasing its potential for enhancing real-time handgun and knife and knife detection capabilities in IoT-based video surveillance systems.

Keywords: Real-time detection; handgun and knife detection; edge devices; IoT video surveillance; deep learning; convolutional neural network

Haibo Liu and Zhubing HU, “An Edge Computing-based Handgun and Knife Detection Method in IoT Video Surveillance Systems” International Journal of Advanced Computer Science and Applications(IJACSA), 14(11), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0141117

@article{Liu2023,
title = {An Edge Computing-based Handgun and Knife Detection Method in IoT Video Surveillance Systems},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0141117},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0141117},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {11},
author = {Haibo Liu and Zhubing HU}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org