The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0141132
PDF

Enhancing Style Transfer with GANs: Perceptual Loss and Semantic Segmentation

Author 1: A Satchidanandam
Author 2: R. Mohammed Saleh Al Ansari
Author 3: A L Sreenivasulu
Author 4: Vuda Sreenivasa Rao
Author 5: Sanjiv Rao Godla
Author 6: Chamandeep Kaur

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 11, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The goal of artistic style translation is to combine an image's substance with an equivalent image's spirit of innovation. Current approaches are unable to consistently capture complex stylistic elements and maintain uniform stylization over semantic segments, which results in artefacts. Also suggest a novel approach which blends subjective loss algorithms using deep networks of neurons with segmentation using semantics to address these issues. By guaranteeing contextually-aware design distribution together with information preservation, the combination improves general aesthetic correctness during the styling transmission process. With this technique, perceptive components are extracted using both the subject matter and the style photos using previously trained deep neural systems. These components combine to provide perceptive loss coefficients, which are subsequently included into the design of a Generative Adversarial Network (GAN). For offering the representation a better grasp of the meaning contained in any given image, an automatic segmenting module is subsequently implemented. This historical data directs the style transferring process, producing an additional precise and sophisticated transition. The outcomes of our experiments confirm the efficacy of this method and demonstrate improved visual accuracy over earlier approaches. The use of semantic segmentation and loss of perceptual information algorithms together provide a significant 95.6% improvement in visual accuracy. This method effectively overcomes the drawbacks of earlier approaches, providing precise and trustworthy transference of style and constituting a noteworthy advancement in the field of imaginative style transfer. The final output graphics further demonstrate the importance of the recommended approach by deftly integrating decorative elements into functionally significant places.

Keywords: Artistic style transfer; Generative Adversarial Networks (GANs); semantic segmentation; visual fidelity; deep Convolutional Neural Networks (deep-CNN)

A Satchidanandam, R. Mohammed Saleh Al Ansari, A L Sreenivasulu, Vuda Sreenivasa Rao, Sanjiv Rao Godla and Chamandeep Kaur, “Enhancing Style Transfer with GANs: Perceptual Loss and Semantic Segmentation” International Journal of Advanced Computer Science and Applications(IJACSA), 14(11), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0141132

@article{Satchidanandam2023,
title = {Enhancing Style Transfer with GANs: Perceptual Loss and Semantic Segmentation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0141132},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0141132},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {11},
author = {A Satchidanandam and R. Mohammed Saleh Al Ansari and A L Sreenivasulu and Vuda Sreenivasa Rao and Sanjiv Rao Godla and Chamandeep Kaur}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org