The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0141140
PDF

Beyond the Norm: A Modified VGG-16 Model for COVID-19 Detection

Author 1: Shimja M
Author 2: K. Kartheeban

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 11, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The outbreak of Coronavirus Disease 2019 (COVID-19) in the initial days of December 2019 has severely harmed human health and the world's overall condition. There are currently five million instances that have been confirmed, and the unique virus is continuing spreading quickly throughout the entire world. The manual Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test is time-consuming and difficult, and many hospitals throughout the world do not yet have an adequate number of testing kits. Designing an automated and early diagnosis system that can deliver quick decisions and significantly lower diagnosis error is therefore crucial. Recent advances in emerging Deep Learning (DL) algorithms and emerging Artificial Intelligence (AI) approaches have made the chest X-ray images a viable option for early COVID-19 screening. For visual image analysis, CNNs are the most often utilized class of deep learning neural networks. At the core of CNN is a multi-layered neural network that offers solutions, particularly for the analysis, classification, and recognition of videos and images. This paper proposes a modified VGG-16 model for detection of COVID-19 infection from chest X-ray images. The analysis has been made among the model by considering some important parameters such as accuracy, precision and recall. The model has been validated on publicly available chest X-ray images. The best performance is obtained by the proposed model with an accuracy of 97.94%.

Keywords: Covid-19; coronavirus; artificial intelligence; deep learning; transfer learning; VGG-16; performance metrics

Shimja M and K. Kartheeban, “Beyond the Norm: A Modified VGG-16 Model for COVID-19 Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 14(11), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0141140

@article{M2023,
title = {Beyond the Norm: A Modified VGG-16 Model for COVID-19 Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0141140},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0141140},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {11},
author = {Shimja M and K. Kartheeban}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org