The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0141144
PDF

An Overview of Different Deep Learning Techniques Used in Road Accident Detection

Author 1: Vinu Sherimon
Author 2: Sherimon P. C
Author 3: Alaa Ismaeel
Author 4: Alex Babu
Author 5: Sajina Rose Wilson
Author 6: Sarin Abraham
Author 7: Johnsymol Joy

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 11, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Every year, numerous lives are tragically lost because of traffic accidents. While many factors may lead to these accidents, one of the most serious issues is the emergency services' delayed response. Often, valuable time is lost due to a lack of information or difficulty determining the location and severity of an accident. To solve this issue, extensive research has been conducted on the creation of effective traffic accident detection and information communication systems. These systems use new technology, such as deep learning algorithms, to spot accidents quickly and correctly and communicate important information to emergency workers. This study provides an overview of current research in this field and identifies similarities among various systems. Based on the review findings, it was found that researchers utilised various techniques, including MLP (Multilayer Perceptron), CNN (Convolutional Neural Network), and models such as DenseNet, Inception V3, LSTM (Long short-term memory), YOLO (You Only Look Once), and RNN (Recurrent Neural Network), among others. Among these models, the MLP model demonstrated high accuracy. However, the Inception V3 model outperformed the others in terms of prediction time, making it particularly well-suited for real-time deployment at the edge and providing end-to-end functionality. The insights gained from this review will help enhance systems for detecting traffic accidents, which will lead to safer roads and fewer casualties. Future research must address several challenges, despite the promising results showcased by the proposed systems. These challenges include low visibility during nighttime conditions, occlusions that hinder accurate detection, variations in traffic patterns, and the absence of comprehensive annotated datasets.

Keywords: Deep learning; road traffic; road accident detection; MLP; CNN; LSTM; DenseNet; RNN; inception V3

Vinu Sherimon, Sherimon P. C, Alaa Ismaeel, Alex Babu, Sajina Rose Wilson, Sarin Abraham and Johnsymol Joy, “An Overview of Different Deep Learning Techniques Used in Road Accident Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 14(11), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0141144

@article{Sherimon2023,
title = {An Overview of Different Deep Learning Techniques Used in Road Accident Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0141144},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0141144},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {11},
author = {Vinu Sherimon and Sherimon P. C and Alaa Ismaeel and Alex Babu and Sajina Rose Wilson and Sarin Abraham and Johnsymol Joy}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org