The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0141148
PDF

Development of a Framework for Classification of Impulsive Urban Sounds using BiLSTM Network

Author 1: Nazbek Katayev
Author 2: Aigerim Altayeva
Author 3: Bayan Abduraimova
Author 4: Nurgul Kurmanbekkyzy
Author 5: Zhumabay Madibaiuly
Author 6: Bakhytzhan Kulambayev

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 11, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Urban environments are awash with myriad sounds, among which impulsive noises stand distinct due to their brief and often disruptive nature. As cities evolve and expand, the accurate classification and management of these impulsive sounds become paramount for urban planners, environmental scientists, and public health advocates. This paper introduces a novel framework leveraging the Bidirectional Long Short-Term Memory (BiLSTM) Network for the systematic categorization of impulsive urban sounds. Traditional methodologies often falter in recognizing the nuanced intricacies of such noises. In contrast, the presented BiLSTM-based approach adapts to the temporal variability intrinsic to these sounds, thereby enhancing classification accuracy. The research harnesses an expansive dataset, curated from various urban settings, to train and validate the model. Preliminary findings suggest that our BiLSTM framework outperforms existing models, with a marked increase in both specificity and sensitivity metrics. The outcome of this study holds profound implications for city acoustics management, noise pollution control, and urban health interventions. Moreover, the framework's adaptability paves the way for its application across diverse acoustic landscapes beyond the urban realm. Future endeavors should seek to further optimize the model by integrating more diverse soundscapes and addressing potential biases in data collection.

Keywords: Impulsive sound; machine learning; deep learning; CNN; LSTM; classification

Nazbek Katayev, Aigerim Altayeva, Bayan Abduraimova, Nurgul Kurmanbekkyzy, Zhumabay Madibaiuly and Bakhytzhan Kulambayev, “Development of a Framework for Classification of Impulsive Urban Sounds using BiLSTM Network” International Journal of Advanced Computer Science and Applications(IJACSA), 14(11), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0141148

@article{Katayev2023,
title = {Development of a Framework for Classification of Impulsive Urban Sounds using BiLSTM Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0141148},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0141148},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {11},
author = {Nazbek Katayev and Aigerim Altayeva and Bayan Abduraimova and Nurgul Kurmanbekkyzy and Zhumabay Madibaiuly and Bakhytzhan Kulambayev}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org