The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0141177
PDF

A Hybrid Movies Recommendation System Based on Demographics and Facial Expression Analysis using Machine Learning

Author 1: Mohammed Balfaqih

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 11, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Cinemas and digital platforms offer an extensive array of content requiring tailored filtering to cater to individual preferences. While recommender systems prove invaluable for this purpose, conventional movie recommendations tend to emphasize specific attributes, leading to a reduction in overall accuracy and reliability. Notably, the extraction process of facial temporal attributes exhibits a suboptimal level of accuracy, thereby influencing the classification of attributes and the overall accuracy of the recommendation system. This article introduces a hybrid recommender system that seamlessly integrates collaborative filtering and content-based methodologies. The system takes into account crucial factors such as age, gender, emotion, and genre attributes. Films undergo an initial categorization based on genre, with a subsequent selection of the most representative genres to ascertain group preferences. Ratings for these selected movies are then predicted and organized in descending order. Employing Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) models, the system achieves real-time extraction of facial attributes, particularly enhancing the accuracy of emotion attribute extraction through sequential processing. The CNN model demonstrates a commendable 55.3% accuracy score, the LSTM model excels with a 59.1% score, while the combined CNN and LSTM models showcase an impressive 60.2% accuracy. The performance of the recommendation system is rigorously evaluated using standard metrics, including precision, recall, and F1-measure. Results underscore the superior performance of the proposed system across various testing scenarios compared to the established benchmark. Nevertheless, it is noteworthy that the precision of the benchmark marginally surpasses the proposed system in the age groups of 8-14 and 15-24.

Keywords: Recommender system; movies recommendation; emotion prediction; k-means clustering; deep learning

Mohammed Balfaqih, “A Hybrid Movies Recommendation System Based on Demographics and Facial Expression Analysis using Machine Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 14(11), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0141177

@article{Balfaqih2023,
title = {A Hybrid Movies Recommendation System Based on Demographics and Facial Expression Analysis using Machine Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0141177},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0141177},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {11},
author = {Mohammed Balfaqih}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org