The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0141178
PDF

Analysis of Ransomware Impact on Android Systems using Machine Learning Techniques

Author 1: Anfal Sayer M. Al-Ruwili
Author 2: Ayman Mohamed Mostafa

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 11, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Ransomware is a significant threat to Android systems. Traditional methods of detection and prediction have been used, but with the advancement of technology and artificial intelligence, new and innovative techniques have been developed. Machine learning (ML) algorithms are a branch of artificial intelligence that have several important advantages, including phishing detection, malware detection, and spam filtering. ML algorithms can also be used to detect ransomware by learning the patterns and behaviors associated with ransomware attacks. ML algorithms can be used to develop detection systems that are more effective than traditional signature-based methods. The selection of the dataset is a crucial step in developing an ML-based ransomware detection system. The dataset should be large, diverse, and representative of the real-world threats that the system will face. It should also include a variety of features that are informative for ransomware detection. This research presents a survey of ML algorithms for ransomware detection and prediction. The authors discuss the advantages of ML-based ransomware detection systems over traditional signature-based methods. They also discuss the importance of selecting a large, diverse, and representative dataset for training ML algorithms. Two datasets are applied during the conducted experiments, which are SEL and ransomware datasets. The experiments are repeated with different splitting ratios to identify the overall performance of each ML algorithm. The results of the paper are also compared to recent methods of ransomware detection and showed high performance of the proposed model.

Keywords: Ransomware; machine learning; malware detection; phishing detection; spam filtering

Anfal Sayer M. Al-Ruwili and Ayman Mohamed Mostafa, “Analysis of Ransomware Impact on Android Systems using Machine Learning Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 14(11), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0141178

@article{Al-Ruwili2023,
title = {Analysis of Ransomware Impact on Android Systems using Machine Learning Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0141178},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0141178},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {11},
author = {Anfal Sayer M. Al-Ruwili and Ayman Mohamed Mostafa}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org