The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0141180
PDF

Offensive Language Detection on Online Social Networks using Hybrid Deep Learning Architecture

Author 1: Gulnur Kazbekova
Author 2: Zhuldyz Ismagulova
Author 3: Zhanar Kemelbekova
Author 4: Sarsenkul Tileubay
Author 5: Boranbek Baimurzayev
Author 6: Aizhan Bazarbayeva

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 11, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the digital era, online social networks (OSNs) have revolutionized communication, creating spaces for vibrant public discourse. However, these platforms also harbor offensive language that can proliferates hate speech, cyberbullying, and discrimination, significantly undermining the quality of online interactions and posing severe social implications. This research paper introduces a sophisticated approach to offensive language detection on OSNs, employing a novel Hybrid Deep Learning Architecture (HDLA). The urgency of addressing offensive content is juxtaposed with the challenges inherent in accurately identifying nuanced communications, thus necessitating an advanced model that transcends the limitations of traditional natural language processing techniques. The proposed HDLA model synergistically integrates Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) networks, capitalizing on the strengths of both methodologies. While the CNN component excels in the hierarchical extraction of spatial features within text data, identifying offensive patterns often concealed in the structural nuances, the LSTM network, adept in processing sequential data, captures the contextual dependencies in user posts over time. This duality ensures a comprehensive analysis of complex linguistic constructs, enhancing the detection accuracy for both overt and covert offensive content. Our research meticulously evaluates the HDLA model using extensive, multi-source datasets reflective of diverse OSN environments, establishing benchmarks against prevailing deep learning models. Results indicate a substantial improvement in precision, recall, and F1-score, demonstrating the model's efficacy in identifying offensive language amidst varying degrees of subtlety and complexity. Furthermore, the model maintains high interpretability, providing insights into the intricate mechanisms of offensive content propagation. Our findings underscore the potential of HDLA in fostering healthier online communities by efficiently curating digital content, thereby upholding the integrity of digital communication spaces.

Keywords: Offensive language; machine learning; deep learning; social media; detection; classification

Gulnur Kazbekova, Zhuldyz Ismagulova, Zhanar Kemelbekova, Sarsenkul Tileubay, Boranbek Baimurzayev and Aizhan Bazarbayeva, “Offensive Language Detection on Online Social Networks using Hybrid Deep Learning Architecture” International Journal of Advanced Computer Science and Applications(IJACSA), 14(11), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0141180

@article{Kazbekova2023,
title = {Offensive Language Detection on Online Social Networks using Hybrid Deep Learning Architecture},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0141180},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0141180},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {11},
author = {Gulnur Kazbekova and Zhuldyz Ismagulova and Zhanar Kemelbekova and Sarsenkul Tileubay and Boranbek Baimurzayev and Aizhan Bazarbayeva}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org