The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Unsupervised Feature Learning Methodology for Tree based Classifier and SVM to Classify Encrypted Traffic

Author 1: RAMRAJ S
Author 2: Usha G

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2023.01402102

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 2, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Presently, sample social applications have emerged, and each one is trying to knock down the other. They expand their game by bringing novelty to the market, being ingenious and providing advanced level of security in the form of encryption. It has become significant to manage the network traffic and analyze it; hence we are performing a network traffic binary classification on one of the globally used application – WhatsApp. Also, this will be helpful to evaluate the sender-receiver system of the application alongside stipulate the properties of the network traces. By analyzing the behavior of network traces, we can scrutinize the type and nature of traffic for future maintenance of the network. In this study, we have carried out three different objectives. First, we have classified between the WhatsApp network packets and other applications using different ML classifiers, secondly, we have segmented the WhatsApp application files into image and text and third, we have incorporated a deep learning module with the same ML classifiers to understand and boost the performance of the previous experiments. Following the experiments, we have also highlighted the difference in the performance of both tree-based and vector-based classifiers of Machine Learning. Based on our findings, XGBoost classifier is a pre-eminent algorithm in the identification of WhatsApp network traces from the dataset. Whereas in the experiment of WhatsApp media segmentation, Random Forest has outperformed the other ML algorithms. Similarly, SVM when clubbed with a Deep Learning Auto encoder boosts the performance of this vector-based classifier in the binary classification task.

Keywords: Network traffic; encrypted network traffic; tree based classifiers; SVM

RAMRAJ S and Usha G, “Unsupervised Feature Learning Methodology for Tree based Classifier and SVM to Classify Encrypted Traffic” International Journal of Advanced Computer Science and Applications(IJACSA), 14(2), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01402102

@article{S2023,
title = {Unsupervised Feature Learning Methodology for Tree based Classifier and SVM to Classify Encrypted Traffic},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01402102},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01402102},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {2},
author = {RAMRAJ S and Usha G}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org