The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Music Note Feature Recognition Method based on Hilbert Space Method Fused with Partial Differential Equations

Author 1: Liqin Liu

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2023.0140217

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 2, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Hilbert space method is an old mathematical theoretical model developed based on linear algebra and has a high theoretical value and practical application. The basic idea of the Hilbert space method is to use the existence of some stable relationship between variables and to use the dynamic dependence between variables to construct the solution of differential equations, thus transforming mathematical problems into algebraic problems. This paper firstly studies the denoising model in the process of music note feature recognition based on partial differential equations, then analyzes the denoising method based on partial differential equations and gives an algorithm for fused music note feature recognition in Hilbert space; secondly, this paper studies the commonly used music note feature recognition methods, including linear predictive cepstral coefficients, Mel frequency cepstral coefficients, wavelet transform-based feature extraction methods and Hilbert space-based feature extraction methods. Their corresponding feature extraction processes are given.

Keywords: Partial differential equation; Hilbert space method; musical note feature recognition method; cepstral coefficients; empirical modal

Liqin Liu, “Music Note Feature Recognition Method based on Hilbert Space Method Fused with Partial Differential Equations” International Journal of Advanced Computer Science and Applications(IJACSA), 14(2), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140217

@article{Liu2023,
title = {Music Note Feature Recognition Method based on Hilbert Space Method Fused with Partial Differential Equations},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140217},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140217},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {2},
author = {Liqin Liu}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org