The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Adversarial Sampling for Fairness Testing in Deep Neural Network

Author 1: Tosin Ige
Author 2: William Marfo
Author 3: Justin Tonkinson
Author 4: Sikiru Adewale
Author 5: Bolanle Hafiz Matti

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2023.0140202

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 2, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this research, we focus on the usage of adversarial sampling to test for the fairness in the prediction of deep neural network model across different classes of image in a given dataset. While several framework had been proposed to ensure robustness of machine learning model against adversarial attack, some of which includes adversarial training algorithm. There is still the pitfall that adversarial training algorithm tends to cause disparity in accuracy and robustness among different group. Our research is aimed at using adversarial sampling to test for fairness in the prediction of deep neural network model across different classes or categories of image in a given dataset. We successfully demonstrated a new method of ensuring fairness across various group of input in deep neural network classifier. We trained our neural network model on the original image, and without training our model on the perturbed or attacked image. When we feed the adversarial samplings to our model, it was able to predict the original category/ class of the image the adversarial sample belongs to. We also introduced and used the separation of concern concept from software engineering whereby there is an additional standalone filter layer that filters perturbed image by heavily removing the noise or attack before automatically passing it to the network for classification, we were able to have accuracy of 93.3%. Cifar-10 dataset have ten categories of dataset, and so, in order to account for fairness, we applied our hypothesis across each categories of dataset and were able to get a consistent result and accuracy.

Keywords: Adversarial machine learning, adversarial attack; adversarial defense; machine learning fairness; fairness testing; adversarial sampling; deep neural network

Tosin Ige, William Marfo, Justin Tonkinson, Sikiru Adewale and Bolanle Hafiz Matti, “Adversarial Sampling for Fairness Testing in Deep Neural Network” International Journal of Advanced Computer Science and Applications(IJACSA), 14(2), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140202

@article{Ige2023,
title = {Adversarial Sampling for Fairness Testing in Deep Neural Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140202},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140202},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {2},
author = {Tosin Ige and William Marfo and Justin Tonkinson and Sikiru Adewale and Bolanle Hafiz Matti}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org