The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140220
PDF

Hybrid Feature Selection Algorithm and Ensemble Stacking for Heart Disease Prediction

Author 1: Nureen Afiqah Mohd Zaini
Author 2: Mohd Khalid Awang

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 2, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In cardiology, as in other medical specialties, early and accurate diagnosis of heart disease is crucial as it has been the leading cause of death over the past few decades. Early prediction of heart disease is now more crucial than ever. However, the state-of-the-art heart disease prediction strategy put more emphasis on classifier selection in enhancing the accuracy and performance of heart disease prediction, and seldom considers feature reduction techniques. Furthermore, there are several factors that lead to heart disease, and it is critical to identify the most significant characteristics in order to achieve the best prediction accuracy and increase prediction performance. Feature reduction reduces the dimensionality of the information, which may allow learning algorithms to work quicker and more efficiently, producing predictive models with the best rate of accuracy. In this study, we explored and suggested a hybrid of two distinct feature reduction techniques, chi-squared and analysis of variance (ANOVA). In addition, using the ensemble stacking method, classification is performed on selected features to classify the data. Using the optimal features based on hybrid features combination, the performance of a stacking ensemble based on logistic regression yields the best result with 93.44%. This can be summarized as the feature selection method can take into account as an effective method for the prediction of heart disease.

Keywords: Heart disease prediction; feature selection; stacking; accuracy

Nureen Afiqah Mohd Zaini and Mohd Khalid Awang, “Hybrid Feature Selection Algorithm and Ensemble Stacking for Heart Disease Prediction” International Journal of Advanced Computer Science and Applications(IJACSA), 14(2), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140220

@article{Zaini2023,
title = {Hybrid Feature Selection Algorithm and Ensemble Stacking for Heart Disease Prediction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140220},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140220},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {2},
author = {Nureen Afiqah Mohd Zaini and Mohd Khalid Awang}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org