The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Classification of Psychological Disorders by Feature Ranking and Fusion using Gradient Boosting

Author 1: Saba Tahseen
Author 2: Ajit Danti

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2023.0140235

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 2, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Negative emotional regulation is a defining element of psychological disorders. Our goal was to create a machine-learning model to classify psychological disorders based on negative emotions. EEG brainwave dataset displaying positive, negative, and neutral emotions. However, negative emotions are responsible for psychological health. In this paper, research focused solely on negative emotional state characteristics for which the divide-and-conquer approach has been applied to the feature extraction process. Features are grouped into four equal subsets and feature selection has been done for each subset by feature ranking approach based on their feature importance determined by the Random Forest-Recursive Feature Elimination with Cross-validation (RF-RFECV) method. After feature ranking, the fusion of the feature subset is employed to obtain a new potential dataset. 10-fold cross-validation is performed with a grid search created using a set of predetermined model parameters that are important to achieving the greatest possible accuracy. Experimental results demonstrated that the proposed model has achieved 97.71% accuracy in predicting psychological disorders.

Keywords: Electroencephalograph (EEG); psychological disorders; negative state emotions; gridSearchCV; gradient boosting classifier

Saba Tahseen and Ajit Danti, “Classification of Psychological Disorders by Feature Ranking and Fusion using Gradient Boosting” International Journal of Advanced Computer Science and Applications(IJACSA), 14(2), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140235

@article{Tahseen2023,
title = {Classification of Psychological Disorders by Feature Ranking and Fusion using Gradient Boosting},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140235},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140235},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {2},
author = {Saba Tahseen and Ajit Danti}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org