The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Using Deep Learning Algorithms to Diagnose Coronavirus Disease (COVID-19)

Author 1: Nfayel Alanazi
Author 2: Yasser Kotb

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2023.0140238

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 2, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: With the rapid development in the area of Machine Learning (ML) and Deep learning, it is important to exploit these tools to contribute to mitigating the effects of the coronavirus pandemic. Early diagnosis of the presence of this virus in the human body can be crucially helpful to healthcare professionals. In this paper, three well-known Convolutional Neural Network deep learning algorithms (VGGNet 16, GoogleNet and ResNet50) are applied to measure their ability to distinguish COVID-19 patients from other patients and to evaluate the best performance among these algorithms with a large dataset. Two stages are conducted, the first stage with 14994 x-ray images and the second one with 33178. Each model has been applied with different batch sizes 16, 32 and 64 in each stage to measure the impact of data size and batch size factors on the accuracy results. The second stage achieved accuracy better than the first one and the 64 batch size gain best results than the 16 and 32. ResNet50 achieves a high rate of 99.31, GoogleNet model achieves 95.55, while VGG16 achieves 96.5. Ultimately, the results affect the process of expediting the diagnosis and referral of these treatable conditions, thereby facilitating earlier treatment, and resulting in improved clinical outcomes.

Keywords: Component; COVID-19; transfer learning; deep learning; ResNet50; VGG16; GoogleNet

Nfayel Alanazi and Yasser Kotb, “Using Deep Learning Algorithms to Diagnose Coronavirus Disease (COVID-19)” International Journal of Advanced Computer Science and Applications(IJACSA), 14(2), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140238

@article{Alanazi2023,
title = {Using Deep Learning Algorithms to Diagnose Coronavirus Disease (COVID-19)},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140238},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140238},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {2},
author = {Nfayel Alanazi and Yasser Kotb}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org