The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Hierarchical Pretrained Deep Learning Features for the Breast Cancer Classification

Author 1: Abeer S. Alsheddi

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2023.0140248

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 2, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Breast cancer is a common and fatal disease among women worldwide. Accurately and early diagnosing of breast cancer plays a pivotal role in improving the prognosis of patients. Recently, advanced techniques of artificial intelligence and natural image classification have been used for the breast cancer image classification task and have become a hot topic for research in machine learning. This paper proposes a fully automatic computerized method for breast cancer classification using two well-established pretrained CNN models, namely VGG16 and ResNet50. Next, the feature extraction process is used to extract features in a hierarchical manner to train a support vector machine classifier. Evaluating the proposed model shows achieving 92% accuracy. In addition, this paper investigates the effect of different factors, highlights its findings, and provides future directions for the research to develop more advanced models.

Keywords: Feature extraction; CNN models; Pretrained models; breast cancer classification

Abeer S. Alsheddi, “Hierarchical Pretrained Deep Learning Features for the Breast Cancer Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 14(2), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140248

@article{Alsheddi2023,
title = {Hierarchical Pretrained Deep Learning Features for the Breast Cancer Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140248},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140248},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {2},
author = {Abeer S. Alsheddi}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org