The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Fall Detection and Monitoring using Machine Learning: A Comparative Study

Author 1: Shaima R. M Edeib
Author 2: Rudzidatul Akmam Dziyauddin
Author 3: Nur Izdihar Muhd Amir

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2023.0140284

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 2, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The detection of falls has emerged as an important topic for the public to discuss because of the prevalence and severity of unintentional falls, particularly among the elderly. A Fall Detection System, known as an FDS, is a system that gathers data from wearable Internet-of-Things (IoT) device and classifies the outcomes to distinguish falls from other activities and call for prompt medical aid in the event of a fall. In this paper, we determine either fall or not fall using machine learning prior to our collected fall dataset from accelerometer sensor. From the acceleration data, the input features are extracted and deployed to supervised machine learning (ML) algorithms namely, Support Vector Machine (SVM), Decision Tree, and Naive Bayes. The results show that the accuracy of fall detection reaches 95%, 97 % and 91% without any false alarms for the SVM, Decision Tree, and Naïve Bayes, respectively.

Keywords: Fall detection; machine learning; acceleration data; SVM; decision tree; Naïve Bayes; IoT

Shaima R. M Edeib, Rudzidatul Akmam Dziyauddin and Nur Izdihar Muhd Amir, “Fall Detection and Monitoring using Machine Learning: A Comparative Study” International Journal of Advanced Computer Science and Applications(IJACSA), 14(2), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140284

@article{Edeib2023,
title = {Fall Detection and Monitoring using Machine Learning: A Comparative Study},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140284},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140284},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {2},
author = {Shaima R. M Edeib and Rudzidatul Akmam Dziyauddin and Nur Izdihar Muhd Amir}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org