The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.01403100
PDF

Incremental Diversity: An Efficient Anonymization Technique for PPDP of Multiple Sensitive Attributes

Author 1: Veena Gadad
Author 2: Sowmyarani C N

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 3, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Data collected at the organizations such as schools, offices, healthcare centers and e-commerce websites contain multiple sensitive attributes. The sensitive information from these organisations such as marks obtained, salary, disease, treatment and traveling history are personal information that an individual dislikes to disclose to the public as it may lead to privacy threats. Therefore, it is necessary to preserve privacy of the data before publishing. Privacy Preserving Data Publishing(PPDP) algorithms aim to publish the data without compromising the privacy of individuals. In the recent years several algorithms have been designed for PPDP multiple sensitive attributes. The major limitations are, firstly among several sensitive attributes these algorithms consider one of them as primary sensitive attribute and anonymize the data, however there may be other dominant sensitive attributes that need to be preserved. Secondly, there is no consistent way to categorize multiple sensitive attributes. Lastly, increased proportion of records are generated due to usage of generalization and suppression techniques. Hence, to overcome these limitations the current work proposes an efficient approach to categorize the sensitive attributes based their semantics and anonymize the data using an anatomy technique. This reduces the residual records as well as categorizes the attributes. The results are compared with popular techniques like Simple Distribution of Sensitive Values (SDSV) and (l, e) diversity. Experiments prove that our method outperforms the existing methods in terms of categorization of multiple sensitive attributes, reducing the percentage of residual records and preventing the existing privacy threats.

Keywords: Data management; privacy preserving data publishing; data privacy; multiple sensitive attributes; data anonymization; privacy attacks

Veena Gadad and Sowmyarani C N, “Incremental Diversity: An Efficient Anonymization Technique for PPDP of Multiple Sensitive Attributes” International Journal of Advanced Computer Science and Applications(IJACSA), 14(3), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01403100

@article{Gadad2023,
title = {Incremental Diversity: An Efficient Anonymization Technique for PPDP of Multiple Sensitive Attributes},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01403100},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01403100},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {3},
author = {Veena Gadad and Sowmyarani C N}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org