The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.01403103
PDF

Heart Disease Classification and Recommendation by Optimized Features and Adaptive Boost Learning

Author 1: Pardeep Kumar
Author 2: Ankit Kumar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 3, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In recent decades, cardiovascular diseases have eclipsed all others as the main reason for death in both low and middle income countries. Early identification and continuous clinical monitoring can reduce the death rate associated with heart disorders. Neither service is yet accessible, as it requires more intellect, time, and skill to effectively detect cardiac disorders in all circumstances and to advise a patient for 24 hours. In this study, researchers suggested a Machine Learning-based approach to forecast the development of cardiac disease. For precise identification of cardiac disease, an efficient ML technique is required. The proposed method works on five classes, one normal and four diseases. In the research, all classes were assigned a primary task, and recommendations were made based on that. The proposed method optimises feature weighting and selects efficient features. Following feature optimization, adaptive boost learning using tree and KNN bases is used. In the trial, sensitivity improved by 3-4%, specificity by 4-5%, and accuracy by 3-4% compared to the previous approach.

Keywords: Heart disease prediction; heart disease; machine learning; optimization; multi-objective features

Pardeep Kumar and Ankit Kumar, “Heart Disease Classification and Recommendation by Optimized Features and Adaptive Boost Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 14(3), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01403103

@article{Kumar2023,
title = {Heart Disease Classification and Recommendation by Optimized Features and Adaptive Boost Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01403103},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01403103},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {3},
author = {Pardeep Kumar and Ankit Kumar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org