The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Indexing
  • Submit your Paper
  • Guidelines
  • Fees
  • Current Issue
  • Archives
  • Editors
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140313
PDF

An Add-on CNN based Model for the Detection of Tuberculosis using Chest X-ray Images

Author 1: Roopa N K
Author 2: Mamatha G S

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 3, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Machine Learning has been potentially contributing towards smart diagnosis in the medical domain for more than a decade with a target towards achieving higher accuracy in detection and classification. However, from the perspective of medical image processing, the contribution of machine learning towards segmentation is not been much to find in recent times. The proposed study considers a use case of Tuberculosis detection and classification from chest x-rays where a unique machine learning approach of Convolution Neural Network is adopted for segmentation of lung images from CXR. A computational framework is developed that performs segmentation, feature extraction, detection, and classification. The proposed system's study outcome is analyzed with and without segmentation over existing machine learning models to exhibit 99.85% accuracy, which is the highest score to date in contrast to existing approaches found in the literature. The study outcome based on the comparative analysis exhibits the effectiveness of the proposed system.

Keywords: Chest X-Ray; machine learning; convolution neural network; segmentation; detection; classification

Roopa N K and Mamatha G S, “An Add-on CNN based Model for the Detection of Tuberculosis using Chest X-ray Images” International Journal of Advanced Computer Science and Applications(IJACSA), 14(3), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140313

@article{K2023,
title = {An Add-on CNN based Model for the Detection of Tuberculosis using Chest X-ray Images},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140313},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140313},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {3},
author = {Roopa N K and Mamatha G S}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2024

4-5 April 2024

  • Berlin, Germany

Computing Conference 2024

11-12 July 2024

  • London, United Kingdom

IntelliSys 2024

5-6 September 2024

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org