The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140336
PDF

Text-based Sarcasm Detection on Social Networks: A Systematic Review

Author 1: Amal Alqahtani
Author 2: Lubna Alhenaki
Author 3: Abeer Alsheddi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 3, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Sarcasm is a sophisticated phenomenon used for conveying a meaning that differs from what is being said, and it is usually used to express displeasure or ridicule others. Sentiment analysis is a process of uncovering the subjective information from a text. Detecting figurative language such as irony or sarcasm, is a focused challenging research field of sentiment analysis. Detecting and understanding the use of sarcasm in social networks could provide businesses and politicians with significant insight, since it reflects people’s opinions about certain topics, news, and products. This has especially become relevant recently because sarcastic texts have been trending on social networks and are being posted by millions of active users. As a result of this situation, there is now an increasing amount of research on the detection of sarcasm in social network posts. Many works have been published on sarcasm detection, and they include a wide variety of techniques based on rules, lexicons, traditional machine learning, deep learning, and transformers. However, sarcasm detection is a challenging task due to the ambiguity and non-straightforward nature of sarcastic text. In addition, very few reviews have been conducted on the research in this area. Therefore, this systematic review mainly aims at exploring the newly published sarcasm detection articles on social networks in the years between 2019 and 2022. Several databases were extensively searched, and 30 articles that met the criteria were included. The selected articles were reviewed based on their approaches, datasets, and evaluation metrics. The findings emphasized that deep learning is the most commonly used technique for sarcasm detection in recent literature, and Twitter and F-measure are the most used source and performance metric, respectively. Finally, this article presents a brief discussion regarding the challenges in sarcasm detection and future research directions.

Keywords: Sentiment analysis; figurative language; sarcasm detection; irony; machine learning; deep learning; transformer

Amal Alqahtani, Lubna Alhenaki and Abeer Alsheddi, “Text-based Sarcasm Detection on Social Networks: A Systematic Review” International Journal of Advanced Computer Science and Applications(IJACSA), 14(3), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140336

@article{Alqahtani2023,
title = {Text-based Sarcasm Detection on Social Networks: A Systematic Review},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140336},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140336},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {3},
author = {Amal Alqahtani and Lubna Alhenaki and Abeer Alsheddi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org