The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140307
PDF

Pancreatic Cancer Segmentation and Classification in CT Imaging using Antlion Optimization and Deep Learning Mechanism

Author 1: Radhia Khdhir
Author 2: Aymen Belghith
Author 3: Salwa Othmen

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 3, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Pancreatic cancer, a fatal type of cancer, has a very poor prognosis. To monitor, forecast, and categorise cancer presence, automated pancreatic cancer segmentation and classification utilising Computer-Aided Diagnostic (CAD) model can be used. Furthermore, deep learning algorithms can provide in-depth diagnostic knowledge and precise image analysis for therapeutic usage. In this context, our study aims to develop an Antlion Optimization-Convolutional Neural Network-Gated Recurrent Unit (ALO-CNN-GRU) model for pancreatic tumour segmentation and classification based on deep learning and CT scans. The ALO-CNN-GRU technique’s objective is to segment and categorize the presence of cancer tissues. This technique consists of pre-processing, segmentation and feature extraction and classification phases. The images go through a pre-processing stage to reduce noise from the dataset that was obtained. A hybrid Gaussian and median filter is applied for the pre-processing phase. To identify the pancreatic area that is affected, the segmentation is processed utilizing the Antlion optimization method. Then, the categorization of pancreatic cancer as benign or malignant is done by employing the classifiers of the Convolutional neural network and Gated Recurrent Unit networks. The suggested model offers improved precision and a better rate of pancreatic cancer diagnosis with an accuracy of 99.92%.

Keywords: Pancreatic cancer; antlion optimization; deep learning; convolutional neural network

Radhia Khdhir, Aymen Belghith and Salwa Othmen, “Pancreatic Cancer Segmentation and Classification in CT Imaging using Antlion Optimization and Deep Learning Mechanism” International Journal of Advanced Computer Science and Applications(IJACSA), 14(3), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140307

@article{Khdhir2023,
title = {Pancreatic Cancer Segmentation and Classification in CT Imaging using Antlion Optimization and Deep Learning Mechanism},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140307},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140307},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {3},
author = {Radhia Khdhir and Aymen Belghith and Salwa Othmen}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org