The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140392
PDF

Towards Finding the Impact of Deep Learning in Educational Time Series Datasets – A Systematic Literature Review

Author 1: Vanitha S
Author 2: Jayashree. R

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 3, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Besides teaching in the education system, instructors do a bunch of background processes such as preparing study material, question paper setting, managing attendance, log book entry, student assessment, and the result analysis of the class. Moreover, Learning Management System(LMS) is mandatory if the course is online. The Massive Open Online Course (MOOC) is an example of the worldwide online education system. Nowadays, educators are using Google to efficiently formulate study material, question papers, and especially for self-preparation. Also, student assessment and result analysis tools are available to get instant results by feeding student data. Artificial Intelligence (AI) is driving behind these applications to deliver the most precise outcome. To accomplish that, AI requires historical data to train the model, and this sequential (year-wise, month-wise, etc) information is called time series data. This Systematic Literature Review (SLR) is conducted to find the contribution of time series algorithms in Education. There are enormous changes in algorithm architecture analogized to the traditional neural network to endure all kinds of data. Though it significantly raises the performance, it expands the complexity, resources, and execution time as well. Due to this, comprehending the algorithm architecture and the method of the execution process is a challenging phase before creating the model. But it is essential to have enough knowledge to select the suitable technique for the right solution. The first part reviews the time series problems in educational datasets using Deep Learning(DL). The second part describes the architecture of the time series model, such as the Recurrent Neural Network (RNN) and its variants called Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU), the differences between each other, and the classification of performance metrics. Finally, the factors affecting the time series model accuracy and the significance of this work are summarized to incite the people who desire to initiate the research in educational time series problems.

Keywords: Deep learning; education; gated recurrent unit; long-short term memory; recurrent neural network; time series

Vanitha S and Jayashree. R, “Towards Finding the Impact of Deep Learning in Educational Time Series Datasets – A Systematic Literature Review” International Journal of Advanced Computer Science and Applications(IJACSA), 14(3), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140392

@article{S2023,
title = {Towards Finding the Impact of Deep Learning in Educational Time Series Datasets – A Systematic Literature Review},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140392},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140392},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {3},
author = {Vanitha S and Jayashree. R}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org