The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140447
PDF

A Deep Learning based Approach for Recognition of Arabic Sign Language Letters

Author 1: Boutaina Hdioud
Author 2: Mohammed El Haj Tirari

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 4, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: No one can deny that the deaf-mute community has communication problems in daily life. Advances in artificial intelligence over the past few years have broken through this communication barrier. The principal objective of this work is creating an Arabic Sign Language Recognition system (ArSLR) for recognizing Arabic letters. The ArSLR system is developed using our image pre-processing method to extract the exact position of the hand and we proposed architecture of the Deep Convolutional Neural Network (CNN) using depth data. The goal is to make it easier for people who have hearing problems to interact with normal people. Based on user input, our method will detect and recognize hand-sign letters of the Arabic alphabet automatically. The suggested model is anticipated to deliver encouraging results in the recognition of Arabic sign language with an accuracy score of 97,07%. We conducted a comparison study in order to evaluate proposed system, the obtained results demonstrated that this method is able to recognize static signs with greater accuracy than the accuracy obtained by similar other studies on the same dataset used.

Keywords: Deep learning; hand landmark model; convolutional neural network; Arabic sign language recognition

Boutaina Hdioud and Mohammed El Haj Tirari, “A Deep Learning based Approach for Recognition of Arabic Sign Language Letters” International Journal of Advanced Computer Science and Applications(IJACSA), 14(4), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140447

@article{Hdioud2023,
title = {A Deep Learning based Approach for Recognition of Arabic Sign Language Letters},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140447},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140447},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {4},
author = {Boutaina Hdioud and Mohammed El Haj Tirari}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org