The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140458
PDF

A Deep Learning Approach for Sentiment Classification of COVID-19 Vaccination Tweets

Author 1: Haidi Said
Author 2: BenBella S. Tawfik
Author 3: Mohamed A. Makhlouf

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 4, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Now-a-days, social media platforms enable people to continuously express their opinions and thoughts about different topics. Monitoring and analyzing the sentiments of people is essential for governments and business organizations to better understand people’s feelings and thoughts. The Coronavirus disease 2019 (COVID-19) has been one of the most trending topics on social media over the last two years. Consequently, one of the preventative measures to control and prevent the spread of the virus was vaccination. A dataset was formed by collecting tweets from Twitter for over a month from November 13th to December 31st, 2021. After data cleaning, the tweets were assigned a positive, negative, or neutral label using a natural language processing (NLP) sentiment analysis tool. This study aims to analyze people's public opinion towards the vaccination process against COVID-19. To fulfil this goal, an ensemble model based on deep learning (LSTM-2BiGRU) is proposed that combines long short-term memory (LSTM) and bidirectional gated recurrent unit (BiGRU). The performance of the proposed model is compared to five traditional machine learning models, two deep learning models in addition to state-of-the-art models. By comparing the results of the models used in this study, the results reveal that the proposed model outperforms all the machine and deep learning models employed in this work with a 92.46% accuracy score. This study also shows that the number of tweets that involve neutral, positive, and negative sentiments is 517496 (37%) tweets, 484258 (34%) tweets, and 409570 (29%) tweets, respectively. The findings indicate that the number of people carrying neutral sentiments towards COVID-19 immunization through vaccines is the highest among others.

Keywords: COVID-19 vaccination; sentiment analysis; Twitter; machine learning; deep learning; natural language processing (NLP)

Haidi Said, BenBella S. Tawfik and Mohamed A. Makhlouf, “A Deep Learning Approach for Sentiment Classification of COVID-19 Vaccination Tweets” International Journal of Advanced Computer Science and Applications(IJACSA), 14(4), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140458

@article{Said2023,
title = {A Deep Learning Approach for Sentiment Classification of COVID-19 Vaccination Tweets},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140458},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140458},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {4},
author = {Haidi Said and BenBella S. Tawfik and Mohamed A. Makhlouf}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org