The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140528
PDF

Towards an Adaptive e-Learning System Based on Deep Learner Profile, Machine Learning Approach, and Reinforcement Learning

Author 1: Riad Mustapha
Author 2: Gouraguine Soukaina
Author 3: Qbadou Mohammed
Author 4: Aoula Es-Sâadia

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 5, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Now-a-days, the great challenge of adaptive e-learning systems is to recommend an individualized learning scenario according to the specific needs of learners. Therefore, the perfect adaptive e-learning system is the one that is based on a deep learner profile to recommend the most appropriate learning objects for that learner. Yet, the majority of existing adaptive e-learning systems do not give high importance to the adequacy of the real learner profile and its update with the one taken into account in the learning path recommendation. In this paper, we proposed an intelligent adaptive e-learning system, based on machine learning and reinforcement learning. The objectives of this system are the creation of a deep profile of a given learner, via the implementation of K-means and linear regression, and the recommendation of adaptive learning paths according to this deep profile, by implementing the Q-learning algorithm. The proposed system is decomposed into three principal modules, data preprocessing module, learner deep profile creation module, and learning path recommendation module. These three modules interact with each other to provide a personalized adaptation according to the learner's deep profile. The results obtained indicate that taking into account the learner's deep profile improves the quality of learning for learners.

Keywords: Adaptive e-learning system; deep learner profile; reinforcement learning; Q-learning; k-means; linear regression; learning path recommendation; learning object

Riad Mustapha, Gouraguine Soukaina, Qbadou Mohammed and Aoula Es-Sâadia, “Towards an Adaptive e-Learning System Based on Deep Learner Profile, Machine Learning Approach, and Reinforcement Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 14(5), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140528

@article{Mustapha2023,
title = {Towards an Adaptive e-Learning System Based on Deep Learner Profile, Machine Learning Approach, and Reinforcement Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140528},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140528},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {5},
author = {Riad Mustapha and Gouraguine Soukaina and Qbadou Mohammed and Aoula Es-Sâadia}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org