The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140531
PDF

A Comparative Study of Machine Learning Techniques to Predict Types of Breast Cancer Recurrence

Author 1: Meryem Chakkouch
Author 2: Merouane Ertel
Author 3: Aziz Mengad
Author 4: Said Amali

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 5, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The prediction of breast cancer recurrence is a crucial problem in cancer research that requires accurate and efficient prediction models. This study aims to compare the performance of different machine learning techniques in predicting types of breast cancer recurrence. In this study, the performance of logistic regression, decision tree, K-Nearest Neighbors, and artificial neural network algorithms was compared on a breast cancer recurrence dataset. The results show that the artificial neural network algorithm outperformed the other algorithms with 91% accuracy, followed by the decision tree (DT) algorithm and K-Nearest Neighbors (kNN) also performed well with accuracies of 90.10% and 88.20%, respectively, while the logistic regression algorithm had the lowest accuracy of 84.60%. The results of this study provide insight into the effectiveness of different machine learning techniques in predicting types of breast cancer recurrence and could guide the development of more accurate prediction models.

Keywords: Breast cancer; machine learning; recurrence prediction; classification multi-classes; logistic regression; decision tree; K-Nearest Neighbors; artificial neural network

Meryem Chakkouch, Merouane Ertel, Aziz Mengad and Said Amali, “A Comparative Study of Machine Learning Techniques to Predict Types of Breast Cancer Recurrence” International Journal of Advanced Computer Science and Applications(IJACSA), 14(5), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140531

@article{Chakkouch2023,
title = {A Comparative Study of Machine Learning Techniques to Predict Types of Breast Cancer Recurrence},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140531},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140531},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {5},
author = {Meryem Chakkouch and Merouane Ertel and Aziz Mengad and Said Amali}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org