The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140554
PDF

A Method for Network Intrusion Detection Based on GAN-CNN-BiLSTM

Author 1: Shuangyuan Li
Author 2: Qichang Li
Author 3: Mengfan Li

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 5, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: As network attacks are more and more frequent and network security is more and more serious, it is important to detect network intrusion accurately and efficiently. With the continuous development of deep learning, a lot of research achievements are applied to intrusion detection. Deep learning is more accurate than machine learning, but in the face of a large amount of data learning, the performance will be degraded due to data imbalance. In view of the serious imbalance of network traffic data sets at present, this paper proposes to process data expansion with GAN to solve data imbalance and detect network intrusion in combination with CNN and BiLSTM. In order to verify the efficiency of the model, the CIC-IDS 2017 data set is used for evaluation, and the model is compared with machine learning methods such as Random Forest and Decision Tree. The experiment shows that the performance of this model is significantly improved over other traditional models, and the GAN-CNN-BiLSTM model can improve the efficiency of intrusion detection, and its overall accuracy is improved compared with SVM, DBN, CNN, BiLSTM and other models.

Keywords: Intrusion detection; GAN; CNN; BiLSTM

Shuangyuan Li, Qichang Li and Mengfan Li, “A Method for Network Intrusion Detection Based on GAN-CNN-BiLSTM” International Journal of Advanced Computer Science and Applications(IJACSA), 14(5), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140554

@article{Li2023,
title = {A Method for Network Intrusion Detection Based on GAN-CNN-BiLSTM},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140554},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140554},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {5},
author = {Shuangyuan Li and Qichang Li and Mengfan Li}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org