The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140564
PDF

Pig Health Abnormality Detection Based on Behavior Patterns in Activity Periods using Deep Learning

Author 1: Duc Duong Tran
Author 2: Nam Duong Thanh

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 5, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Abnormal detection of pig behaviors in pig farms is important for monitoring pig health and welfare. Pigs with health problems often have behavioral abnormalities. Observing pig behaviors can help detect pig health problems and take early treatment to prevent disease from spreading. This paper proposes a method using deep learning for automatically monitoring and detecting abnormalities in pig behaviors from cameras in pig farms based on pig behavior patterns comparison in activity periods. The approach consists of a pipeline of methods, including individual pig detection and localization, pig tracking, and behavioral abnormality analysis. From pig behaviors measured during the detection and tracking process, the behavior patterns of healthy pigs in different activity periods of the day, such as resting, eating, and playing periods, were built. Behavioral abnormalities can be detected if pigs behave differently from the normal patterns in the same activity period. The experiments showed that pig behavior patterns built in 30-minute time duration can help detect behavioral abnormalities with over 90% accuracy when applying the activity period-based approach.

Keywords: Deep learning; pig tracking; behavior patterns; pig health monitoring

Duc Duong Tran and Nam Duong Thanh, “Pig Health Abnormality Detection Based on Behavior Patterns in Activity Periods using Deep Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 14(5), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140564

@article{Tran2023,
title = {Pig Health Abnormality Detection Based on Behavior Patterns in Activity Periods using Deep Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140564},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140564},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {5},
author = {Duc Duong Tran and Nam Duong Thanh}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org