The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140592
PDF

Improved 3D Rotation-based Geometric Data Perturbation Based on Medical Data Preservation in Big Data

Author 1: Jayanti Dansana
Author 2: Manas Ranjan Kabat
Author 3: Prasant Kumar Pattnaik

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 5, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: With the rise in technology, a huge volume of data is being processed using data mining, especially in the healthcare sector. Usually, medical data consist of a lot of personal data, and third parties utilize it for the data mining process. Perturbation in health care data highly aids in preventing intruders from utilizing the patient’s privacy. One of the challenges in data perturbation is managing data utility and privacy protection. Medical data mining has certain special properties compared with other data mining fields. Hence, in this work, the machine learning (ML) based perturbation approach is introduced to provide more privacy to healthcare data. Here, clustering and IGDP-3DR processes are applied to improve healthcare privacy preservation. Initially, the dataset is pre-processed using data normalization. Then, the dimensionality is reduced by SVD with PCA (singular value decomposition with Principal component analysis). Then, the clustering process is performed by IFCM (Improved Fuzzy C means). The high-dimensional data are divided into several segments by IFCM, and every partition is set as a cluster. Then, improved Geometric Data Perturbation (IGDP) is used to perturb the clustered data. IGDP is a combination of GDP with 3D rotation (3DR). Finally, the perturbed data are classified using a machine learning (ML) classifier - kernel Support Vector Machine- Horse Herd Optimization (KSVM-HHO) to classify the perturbed data and ensure better accuracy. The overall evaluation of the proposed KSVM-HHO is carried out in the Python platform. The performance of the IGDP-KSVM-HHO is compared over the two benchmark datasets, Wisconsin prognostic breast cancer (WBC) and Pima Indians Diabetes (PID) dataset. For the WBC dataset, the proposed method obtains an overall accuracy of 98.08% perturbed data, and for the PID dataset, the proposed method obtains an overall accuracy of 98.04%.

Keywords: Data mining; privacy; health care data; machine learning; perturbation; improved fuzzy c-means; horse herd optimization; kernel based support vector machine

Jayanti Dansana, Manas Ranjan Kabat and Prasant Kumar Pattnaik, “Improved 3D Rotation-based Geometric Data Perturbation Based on Medical Data Preservation in Big Data” International Journal of Advanced Computer Science and Applications(IJACSA), 14(5), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140592

@article{Dansana2023,
title = {Improved 3D Rotation-based Geometric Data Perturbation Based on Medical Data Preservation in Big Data},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140592},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140592},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {5},
author = {Jayanti Dansana and Manas Ranjan Kabat and Prasant Kumar Pattnaik}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org