The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.01406111
PDF

A Novel ML Approach for Computing Missing Sift, Provean, and Mutassessor Scores in Tp53 Mutation Pathogenicity Prediction

Author 1: Rashmi Siddalingappa
Author 2: Sekar Kanagaraj

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 6, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Cancer is often caused by missense mutations, where a single nucleotide substitution leads to an amino acid change and affects protein function. This study proposes a novel machine learning (ML) approach to calculate missing values in the tp53 database for three computational methods: SIFT, Provean, and Mutassessor scores. The computed values are compared with those obtained from the imputation method. Using these values, an ML classification model trained on 80,406 samples achieves an accuracy of 85%, while the impute method achieves 75%. The scores and statistics are used to classify samples into five classes: Benign, likely pathogenic, possibly pathogenic, pathogenic, and a variant of uncertain significance. Additionally, a comparative analysis is conducted on 58,444 samples, evaluating six ML techniques. The accuracy obtained by each of these mentioned in mentioned alongside the algorithm: logistic regression (89%), k-nearest neighbor (99%), decision tree (95%), random forest (99.8%), support vector machine with the polynomial kernel (91%), support vector machine with RBF kernel (84%), and deep neural networks (98.2%). These results demonstrate the effectiveness of the proposed ML approach for pathogenicity prediction.

Keywords: Decision tree (DT); deep neural networks (DNN); imputation; k-nearest neighbor (KNN); logistic regression (LR); missense mutations; Mutassessor; pathogenicity; Provean; random forest (RF); SIFT; support vector machine (SVM)

Rashmi Siddalingappa and Sekar Kanagaraj, “A Novel ML Approach for Computing Missing Sift, Provean, and Mutassessor Scores in Tp53 Mutation Pathogenicity Prediction” International Journal of Advanced Computer Science and Applications(IJACSA), 14(6), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01406111

@article{Siddalingappa2023,
title = {A Novel ML Approach for Computing Missing Sift, Provean, and Mutassessor Scores in Tp53 Mutation Pathogenicity Prediction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01406111},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01406111},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {6},
author = {Rashmi Siddalingappa and Sekar Kanagaraj}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org