The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.01406129
PDF

Predicting At-Risk Students’ Performance Based on LMS Activity using Deep Learning

Author 1: Amnah Al-Sulami
Author 2: Miada Al-Masre
Author 3: Norah Al-Malki

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 6, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: It is of great importance for Higher Education (HE) institutions to continuously work on detecting at-risk students based on their performance during their academic journey with the purpose of supporting their success and academic advancement. This is where Learning Analytics (LA) representing learners’ behaviour inside the Learning Management Systems (LMS), Educational Data Mining (EDM), and Deep Learning (DL) techniques come into play as an academic sustainable pipeline, which can be used to extract meaningful predictions of the learners’ future performance based on their online activity. Thus, the aim of this study is to implement a supervised learning approach which utilizes three artifcial neural networks (vRNN, LSTM, and GRU) to develop models that can classify students’ final grade as Pass or Fail based on a number of LMS activity indicators; more precisely, detect failed students who are actually the ones susceptible to risk. The three models alongside a baseline MLP classifier have been trained on two datasets (ELIA 101- 1, and ELIA 101-2) illustrating the LMS activity and final assessment grade of 3529 students who enrolled in an English Foundation-Year course (ELIA 101) taught at King Abdulaziz University (KAU) during the first and second semesters of 2021. Results indicate that though all of the three DL models performed better than the MLP baseline, the GRU model achieved the highest classification accuracy on both datasets: 93.65% and 98.90%, respectively. As regards predicting at-risk students, all of the three DL models achieved an = 81% Recall values, with notable variation of performance depending on the dataset, the highest being the GRU on the ELIA 101-2.

Keywords: Predict at-risk student; artificial neural network; learning management system; and educational data mining

Amnah Al-Sulami, Miada Al-Masre and Norah Al-Malki, “Predicting At-Risk Students’ Performance Based on LMS Activity using Deep Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 14(6), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01406129

@article{Al-Sulami2023,
title = {Predicting At-Risk Students’ Performance Based on LMS Activity using Deep Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01406129},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01406129},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {6},
author = {Amnah Al-Sulami and Miada Al-Masre and Norah Al-Malki}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org