The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.01406139
PDF

The Application of Intelligent Evaluation Method with Deep Learning in Calligraphy Teaching

Author 1: Yu Wang

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 6, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Scientific and effective teaching quality evaluation (QE) is helpful to improve teaching mode and improve teaching quality. At present, calligraphy teaching (CT) QE methods are few in number and have poor evaluation effect. Aiming at these problems, deep learning (DL) is introduced to realize intelligent evaluation of CT quality. First, based on relevant research, the CTQE indicator system is constructed. Secondly, rough set and the principal component analysis (PCA) are used to reduce the dimension of the CTQE index system and extract four common factors. Then, the corresponding index data is input into the BP neural network (BPNN) model optimized by the improved sparrow search algorithm for fitting. Finally, combining the above contents, the improved sparrow search algorithm (ISSA) BPNN model is built to realize the intelligent evaluation of CT quality. The experimental results show that the loss value of ISSA-BPN model is 0.21, and the fitting degree of CT data is 0.953. The evaluation Accuracy is 95%, Precision is 0.945, Recall is 0.923, F1 is 0.942, and AUC is 0.967. These values are superior to the most advanced teaching QE model available. The SSA-BPNNCTQE model proposed in the study has excellent performance in CTQE. This is of positive significance to the improvement of teaching quality and students' calligraphy level.

Keywords: Deep learning; calligraphy teaching; BPNN; intelligent evaluation; sparrow search algorithm

Yu Wang, “The Application of Intelligent Evaluation Method with Deep Learning in Calligraphy Teaching” International Journal of Advanced Computer Science and Applications(IJACSA), 14(6), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01406139

@article{Wang2023,
title = {The Application of Intelligent Evaluation Method with Deep Learning in Calligraphy Teaching},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01406139},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01406139},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {6},
author = {Yu Wang}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org