The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.01406140
PDF

Deep Learning-based Mobile Robot Target Object Localization and Pose Estimation Research

Author 1: Caixia He
Author 2: Laiyun He

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 6, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Two key technologies in robotic object grasping are target object localization and pose estimation (PE), respectively, and the addition of a robotic vision system can dramatically enhance the flexibility and accuracy of robotic object grasping. The study optimizes the classical convolutional structure in the target detection network considering the limited computing power and memory resources of the embedded platform, and replaces the original anchor frame mechanism using an adaptive anchor frame mechanism in combination with the fused depth map. For evaluating the target’s pose, the smooth plane of its surface is identified using the semantic segmentation network, and the target’s pose information is obtained by solving the normal vector of the plane, so that the robotic arm can absorb the object surface along the direction of the plane normal vector to achieve the target’s grasping. The adaptive anchor frame can maintain an average accuracy of 85.75% even when the number of anchor frames is increased, which proves its anti-interference ability to the over fitting problem. The detection accuracy of the target localization algorithm is 98.8%; the accuracy of the PE algorithm is 74.32%; the operation speed could be 25 frames/s. It could satisfy the requirements of real-time physical grasping. In view of the vision algorithm in the study, physical grasping experiments were carried on. Then the success rate of object grasping in the experiments was above 75%, which effectively verified the practicability.

Keywords: Mobile robot; target object localization; pose estimation; YOLOv2 network; FCN semantic segmentation network

Caixia He and Laiyun He, “Deep Learning-based Mobile Robot Target Object Localization and Pose Estimation Research” International Journal of Advanced Computer Science and Applications(IJACSA), 14(6), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01406140

@article{He2023,
title = {Deep Learning-based Mobile Robot Target Object Localization and Pose Estimation Research},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01406140},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01406140},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {6},
author = {Caixia He and Laiyun He}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org