The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.01406146
PDF

Social Media Mining to Detect Online Violent Extremism using Machine Learning Techniques

Author 1: Shynar Mussiraliyeva
Author 2: Kalamkas Bagitova
Author 3: Daniyar Sultan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 6, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, we explore the challenging domain of detecting online extremism in user-generated content on social media platforms, leveraging the power of Machine Learning (ML). We employ six distinct ML and present a comparative analysis of their performance. Recognizing the diverse and complex nature of social media content, we probe how ML can discern extremist sentiments hidden in the vast sea of digital communication. Our study is unique, situated at the intersection of linguistics, computer science, and sociology, shedding light on how coded language and intricate networks of online communication contribute to the propagation of extremist ideologies. The goal is twofold: not only to perfect detection strategies, but also to increase our understanding of how extremism proliferates in digital spaces. We argue that equipping machine learning algorithms with the ability to analyze online content with high accuracy is crucial in the ongoing fight against digital extremism. In conclusion, our findings offer a new perspective on online extremism detection and contribute to the broader discourse on the responsible use of ML in society.

Keywords: NLP; machine learning; social networks; extremism detection; textual contents

Shynar Mussiraliyeva, Kalamkas Bagitova and Daniyar Sultan, “Social Media Mining to Detect Online Violent Extremism using Machine Learning Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 14(6), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01406146

@article{Mussiraliyeva2023,
title = {Social Media Mining to Detect Online Violent Extremism using Machine Learning Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01406146},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01406146},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {6},
author = {Shynar Mussiraliyeva and Kalamkas Bagitova and Daniyar Sultan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org