The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140628
PDF

Application of Conv-1D and Bi-LSTM to Classify and Detect Epilepsy in EEG Data

Author 1: Chetana R
Author 2: A Shubha Rao
Author 3: Mahantesh K

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 6, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: EEG is used to study the electrical changes in the brain and can derive a conclusion as epileptic or not, using an automated method for accurate detection of seizures. Deep learning, a technique ahead of machine learning tools, can self-discover related data for the detection and classification of EEG analysis. Our work focuses on deep neural network architecture to visualize the temporal dependencies in EEG signals. Algorithms and models based on Deep Learning techniques like Conv1D, Conv1D + LSTM, and Conv1D + Bi-LSTM for binary and multiclass classification. Convolution Neural Networks can spontaneously extract and learn features independently in the multichannel time-series EEG signals. Long Short-Term Memory (LSTM) network, with its selective memory retaining capability, Fully Connected (FC) layer, and softmax activation, discover hidden sparse features from EEG signals and predicts labels as output. Two independent LSTM networks combine to form Bi-LSTM in opposite directions and appreciate added visibility to upcoming information to provide efficient work contrary to previous methods. Long-term EEG recordings on the Bonn EEG database, Hauz Khas epileptic database, and Epileptic EEG signals from Spandana Hospital, Bangalore, assess performance. Metrics like precision, recall, f1-score, and support exhibit an improvement over traditional ML algorithms evaluated in the literature.

Keywords: 1D CNN; bidirectional LSTM; dataset (DS); deep learning; electroencephalogram (EEG); LSTM

Chetana R, A Shubha Rao and Mahantesh K, “Application of Conv-1D and Bi-LSTM to Classify and Detect Epilepsy in EEG Data” International Journal of Advanced Computer Science and Applications(IJACSA), 14(6), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140628

@article{R2023,
title = {Application of Conv-1D and Bi-LSTM to Classify and Detect Epilepsy in EEG Data},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140628},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140628},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {6},
author = {Chetana R and A Shubha Rao and Mahantesh K}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org