The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140632
PDF

A Feature-based Transfer Learning to Improve the Image Classification with Support Vector Machine

Author 1: Nina Sevani
Author 2: Kurniawati Azizah
Author 3: Wisnu Jatmiko

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 6, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the big data era there are some issues regarding real-world classification problems. Some of the important challenges that still need to be overcome to produce an accurate classification model are the data imbalance, difficulties in labeling process, and differences on data distribution. Most classification problems are related to the differences in the data distribution and the lack of labels on some datasets while other datasets have abundant labels. To address the problem, this paper proposes a weighted-based feature-transfer learning (WbFTL) method to transfer knowledge between different but related domains, called cross-domain. The knowledge transfer is done through making a new feature representations in order to reduce the cross-domain’s distribution differences while maintaining the local structure of the domain. To make the new feature representation we implement a feature selection and inter-cluster class distance. We propose two stages of the feature selection process to capture the knowledge of the feature and its relation to the label. The first stage uses a threshold to select the feature. The second stage uses ANOVA (Analysis of Variance) to select features that are significant to the label. To enhance the accuracy, the selected features are weighted before being used for the training process using SVM. The proposed WbFTL are compared to 1-NN and PCA as baseline 1 and baseline 2. Both baseline models represent the traditional machine learning and dimensionality reduction method, without implementing transfer learning. It is also compared with TCA, the first feature-transfer learning work on this same task, as baseline 3. The experiment results of 12 cross-domain tasks on Office and Caltech dataset show that the proposed WbFTL can increase the average accuracy by 15.25%, 6.83%, and 3.59% compared to baseline 1, baseline 2, and baseline 3, respectively.

Keywords: Feature-transfer learning; image; feature selection; weight; distance

Nina Sevani, Kurniawati Azizah and Wisnu Jatmiko, “A Feature-based Transfer Learning to Improve the Image Classification with Support Vector Machine” International Journal of Advanced Computer Science and Applications(IJACSA), 14(6), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140632

@article{Sevani2023,
title = {A Feature-based Transfer Learning to Improve the Image Classification with Support Vector Machine},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140632},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140632},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {6},
author = {Nina Sevani and Kurniawati Azizah and Wisnu Jatmiko}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org