The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140639
PDF

Deep Learning for Personal Activity Recognition Under More Complex and Different Placement Positions of Smart Phone

Author 1: Bhagya Rekha Sangisetti
Author 2: Suresh Pabboju

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 6, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Personal Activity Recognition (PAR) is an indispensable research area as it is widely used in applications such as security, healthcare, gaming, surveillance and remote patient monitoring. With sensors introduced in smart phones, data collection for PAR made easy. However, PAR is non-trivial and difficult task due to bulk of data to be processed, complexity and sensor placement positions. Deep learning is found to be scalable and efficient in processing such data. However, the main problem with existing solutions is that, they could recognize up to 6 or 8 actions only. Besides, they suffer from accurate recognition of other actions and also deal with complexity and different placement positions of smart phone. To address this problem, in this paper, we proposed a framework named Robust Deep Personal Action Recognition Framework (RDPARF) which is based on enhanced Convolutional Neural Network (CNN) model which is trained to recognize 12 actions. RDPARF is realized with our proposed algorithm known as Enhanced CNN for Robust Personal Activity Recognition (ECNN-RPAR). This algorithm has provision for early stopping checkpoint to optimize resource consumption and faster convergence. Experiments are made with MHealth benchmark dataset collected from UCI repository. Our empirical results revealed that ECNN-RPAR could recognize 12 actions under more complex and different placement positions of smart phone besides outperforming the state of the art exhibiting highest accuracy with 96.25%.

Keywords: Human activity recognition; deep learning; CNN; MHealth dataset; artificial intelligence

Bhagya Rekha Sangisetti and Suresh Pabboju, “Deep Learning for Personal Activity Recognition Under More Complex and Different Placement Positions of Smart Phone” International Journal of Advanced Computer Science and Applications(IJACSA), 14(6), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140639

@article{Sangisetti2023,
title = {Deep Learning for Personal Activity Recognition Under More Complex and Different Placement Positions of Smart Phone},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140639},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140639},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {6},
author = {Bhagya Rekha Sangisetti and Suresh Pabboju}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org