The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140653
PDF

A Novel Approach to Multi-Layer-Perceptron Training using Quadratic Interpolation Flower Pollination Neural Network on Non-Binary Datasets

Author 1: Yulianto Triwahyuadi Polly
Author 2: Sri Hartati
Author 3: Suprapto
Author 4: Bambang Sumiarto

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 6, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Machine Learning (ML) algorithms are widely used in solving classification problems. The biggest challenge of classification lies in the robustness of the ML algorithm in various dataset characteristics. Quadratic Interpolation Flower Pollination Neural Network (QIFPNN) is categorised into ML algorithm. The new QIFPNN's extraordinary capabilities are measured on binary-type datasets. This research ensures that the remarkable ability of QIFPNN also applies to non-binary datasets with balanced and unbalanced data class characteristics. Flower Pollination Neural Network (FPNN), Particle Swarm Optimisation Neural Network (PSONN), and Bat Neural Network (BANN) were used as comparisons. The QIFPNN, FPNN, PSONN, and BANN were used to train Multi-Layer-Perceptron (MLP). The test results on five datasets show that QIFPNN obtains an average classification accuracy higher than its comparison in three datasets with balanced and unbalanced data class characteristics. The three datasets are Iris, Wine, and Glass. The highest classification accuracy obtained by QIFPNN in the three datasets is 97.1462%, 98.6551%, and 73.1979%, respectively. Based on the F1-score test from QIFPNN, it is higher than all the comparisons in four datasets: Iris, Wine, Vertebral column, and Glass. Sequentially, 96.4599%, 98.7155%, 90.7517%, and 60.2843%. It proves that QIFPNN can also classify datasets with non-binary data types with balanced and unbalanced data class characteristics because they are more consistently tested on various datasets and are not susceptible to the influence of variations in dataset characteristics so that they can be applied to various types of data or cases.

Keywords: Quadratic interpolation; flower pollination algorithm; neural network; non-binary dataset; multi-layer-perceptron

Yulianto Triwahyuadi Polly, Sri Hartati, Suprapto and Bambang Sumiarto, “A Novel Approach to Multi-Layer-Perceptron Training using Quadratic Interpolation Flower Pollination Neural Network on Non-Binary Datasets” International Journal of Advanced Computer Science and Applications(IJACSA), 14(6), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140653

@article{Polly2023,
title = {A Novel Approach to Multi-Layer-Perceptron Training using Quadratic Interpolation Flower Pollination Neural Network on Non-Binary Datasets},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140653},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140653},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {6},
author = {Yulianto Triwahyuadi Polly and Sri Hartati and Suprapto and Bambang Sumiarto}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org