The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140656
PDF

Advances in Machine Learning and Explainable Artificial Intelligence for Depression Prediction

Author 1: Haewon Byeon

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 6, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: There is a growing interest in applying AI technology in the field of mental health, particularly as an alternative to complement the limitations of human analysis, judgment, and accessibility in mental health assessments and treatments. The current mental health treatment service faces a gap in which individuals who need help are not receiving it due to negative perceptions of mental health treatment, lack of professional manpower, and physical accessibility limitations. To overcome these difficulties, there is a growing need for a new approach, and AI technology is being explored as a potential solution. Explainable artificial intelligence (X-AI) with both accuracy and interpretability technology can help improve the accuracy of expert decision-making, increase the accessibility of mental health services, and solve the psychological problems of high-risk groups of depression. In this review, we examine the current use of X-AI technology in mental health assessments for depression. As a result of reviewing 6 studies that used X-AI to discriminate high-risk groups of depression, various algorithms such as SHAP (SHapley Additive exPlanations) and Local Interpretable Model-Agnostic Explanation (LIME) were used for predicting depression. In the field of psychiatry, such as predicting depression, it is crucial to ensure AI prediction justifications are clear and transparent. Therefore, ensuring interpretability of AI models will be important in future research.

Keywords: Depression; LIME; Explainable artificial intelligence; Machine learning; SHAP

Haewon Byeon, “Advances in Machine Learning and Explainable Artificial Intelligence for Depression Prediction” International Journal of Advanced Computer Science and Applications(IJACSA), 14(6), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140656

@article{Byeon2023,
title = {Advances in Machine Learning and Explainable Artificial Intelligence for Depression Prediction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140656},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140656},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {6},
author = {Haewon Byeon}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org