The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140657
PDF

State of-the-Art Analysis of Multiple Object Detection Techniques using Deep Learning

Author 1: Kanhaiya Sharma
Author 2: Sandeep Singh Rawat
Author 3: Deepak Parashar
Author 4: Shivam Sharma

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 6, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Object detection has experienced a surge in interest due to its relevance in video analysis and image interpretation. Traditional object detection approaches relied on handcrafted features and shallow trainable algorithms, which limited their performance. However, the advancement of Deep learning (DL) has provided more powerful tools that can extract semantic, high- level, and deep features, addressing the shortcomings of previous systems. Deep Learning-based object detection models differ regarding network architecture, training techniques, and optimization functions. In this study, common generic designs for object detection and various modifications and tips to enhance detection performance have been investigated. Furthermore, future directions in object detection research, including advancements in Neural Network-based learning systems and the challenges have been discussed. In addition, comparative analysis based on performance parameters of various versions of YOLO approach for multiple object detection has been presented.

Keywords: Deep learning; neural networks; object detection; YOLO

Kanhaiya Sharma, Sandeep Singh Rawat, Deepak Parashar and Shivam Sharma, “State of-the-Art Analysis of Multiple Object Detection Techniques using Deep Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 14(6), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140657

@article{Sharma2023,
title = {State of-the-Art Analysis of Multiple Object Detection Techniques using Deep Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140657},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140657},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {6},
author = {Kanhaiya Sharma and Sandeep Singh Rawat and Deepak Parashar and Shivam Sharma}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org