The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140661
PDF

Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms

Author 1: Victor Guevara-Ponce
Author 2: Ofelia Roque-Paredes
Author 3: Carlos Zerga-Morales
Author 4: Andrea Flores-Huerta
Author 5: Mario Aymerich-Lau
Author 6: Orlando Iparraguirre-Villanueva

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 6, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Breast cancer is the leading cause of mortality in women worldwide. One of the biggest challenges for physicians and technological support systems is early detection, because it is easier to treat and establish curative treatments. Currently, assistive technology systems use images to detect patterns of behavior with respect to patients who have been found to have some type of cancer. This work aims to identify and classify breast cancer using deep learning models and convolutional neural networks (CNN) with transfer learning. For the breast cancer detection process, 7803 real images with benign and malignant labels were used, which were provided by BreaKHis on the Kaggle platform. The convolutional basis (parameters) of pre-trained models VGG16, VGG19, Resnet-50 and Inception-V3 were used. The TensorFlow framework, keras and Python libraries were also used to retrain the parameters of the models proposed for this study. Metrics such as accuracy, error ratio, precision, recall and f1-score were used to evaluate the models. The results show that the models based on VGG16, VGG19 ResNet-50 and Inception-V3 obtain an accuracy of 88%, 86%, 97% and 96% respectively, recall of 84%, 82%, 96% and 96% respectively, in addition to f1-score of 86%, 83%, 96% and 95% respectively. It is concluded that the model that shows the best results is Resnet-50, obtaining high results in all the metrics considered, although it should be noted that the Inception-V3 model achieves very similar results in relation to Resnet-50, in all the metrics. In addition, these two models exceed the 95% threshold of correct results.

Keywords: Convolutional neural networks; transfer learning; deep learning; classification; breast cancer

Victor Guevara-Ponce, Ofelia Roque-Paredes, Carlos Zerga-Morales, Andrea Flores-Huerta, Mario Aymerich-Lau and Orlando Iparraguirre-Villanueva, “Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms” International Journal of Advanced Computer Science and Applications(IJACSA), 14(6), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140661

@article{Guevara-Ponce2023,
title = {Detection of Breast Cancer using Convolutional Neural Networks with Learning Transfer Mechanisms},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140661},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140661},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {6},
author = {Victor Guevara-Ponce and Ofelia Roque-Paredes and Carlos Zerga-Morales and Andrea Flores-Huerta and Mario Aymerich-Lau and Orlando Iparraguirre-Villanueva}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org