The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140678
PDF

Multi-Granularity Tooth Analysis via Faster Region-Convolutional Neural Networks for Effective Tooth Detection and Classification

Author 1: Samah AbuSalim
Author 2: Nordin Zakaria
Author 3: Salama A Mostafa
Author 4: Yew Kwang Hooi
Author 5: Norehan Mokhtar
Author 6: Said Jadid Abdulkadir

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 6, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In image classification, multi-granularity refers to the ability to classify images with different levels of detail or resolution. This is a challenging task because the distinction between subcategories is often minimal, needing a high level of visual detail and precise representation of the features specific to each class. In dental informatics, and more specifically tooth classification poses many challenges due to overlapping teeth, varying sizes, shapes, and illumination levels. To address these issues, this paper considers various data granularity levels since a deeper level of details can be acquired with increased granularity. Three tooth granularity levels are considered in this study named Two Classes Granularity Level (2CGL), Four Classes Granularity Level (4CGL), and Seven Classes Granularity Level (7CGL) to analyze the performance of teeth detection and classification at multi-granularity levels in Granular Intra-Oral Image (GIOI) dataset. Subsequently, a Faster Region-Convolutional Neural Network (FR-CNN) based on three ResNet models is proposed for teeth detection and classification at multi-granularity levels from the GIOI dataset. The FR-CNN-ResNet models exploit the effect of the tooth classification granularity technique to empower the models with accurate features that lead to improved model performance. The results indicate a remarkable detection effect in investigating the granularity effect on the FR-CNN-ResNet model's performance. The FR-CNN-ResNet-50 model achieved 0.94 mAP for 2CGL, 0.74 mAP for 4CGL, and 0.69 mAP for 7CGL, respectively. The findings demonstrated that multi-granularity enables flexible and nuanced analysis of visual data, which can be useful in a wide range of applications.

Keywords: Dental informatics; intra-oral image; deep learning; faster region-convolutional neural network; classification; granularity level; tooth detection

Samah AbuSalim, Nordin Zakaria, Salama A Mostafa, Yew Kwang Hooi, Norehan Mokhtar and Said Jadid Abdulkadir, “Multi-Granularity Tooth Analysis via Faster Region-Convolutional Neural Networks for Effective Tooth Detection and Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 14(6), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140678

@article{AbuSalim2023,
title = {Multi-Granularity Tooth Analysis via Faster Region-Convolutional Neural Networks for Effective Tooth Detection and Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140678},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140678},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {6},
author = {Samah AbuSalim and Nordin Zakaria and Salama A Mostafa and Yew Kwang Hooi and Norehan Mokhtar and Said Jadid Abdulkadir}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org