The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.01407104
PDF

Enhancing Computer-assisted Bone Fractures Diagnosis in Musculoskeletal Radiographs Based on Generative Adversarial Networks

Author 1: Nabila Ounasser
Author 2: Maryem Rhanoui
Author 3: Mounia Mikram
Author 4: Bouchra El Asri

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 7, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Computer-Assisted Bone Fractures Diagnosis in musculoskeletal radiographs plays a crucial role in aiding medical professionals in accurate and timely fracture detection. In this work, we explore a Generative Adversarial Network based approach for this task, which is a powerful deep learning model capable of generating realistic images and detecting anomalies. Our proposed approach leverages the potential of GANs to generate synthetic radiographs with fractures and identify anomalous patterns, thereby enhancing fracture diagnosis. Through extensive experimentation and evaluation on musculoskeletal radiograph datasets (MURA), we demonstrate the effectiveness of GAN-based models in improving fracture detection performance by adopting several evaluation metrics notably accuracy, precision, F1-score and detection speed. These findings highlight the potential of integrating GANs into computer-assisted diagnosis, contributing to the advancement of fracture diagnosis methodologies in orthopedics. It is important to note that GANs operate by training a generator network to produce synthetic images and a discriminator network to distinguish between real and generated images. This adversarial process fosters the generation of realistic radiographs with fractures, enabling accurate and automated detection. Our findings contribute to the advancement of fracture diagnosis methodologies and pave the way for more efficient and precise diagnostic tools in the field of orthopedics.

Keywords: Deep learning; generative adversarial network; diagnosis; orthopedics; fracture detection; x-ray image

Nabila Ounasser, Maryem Rhanoui, Mounia Mikram and Bouchra El Asri, “Enhancing Computer-assisted Bone Fractures Diagnosis in Musculoskeletal Radiographs Based on Generative Adversarial Networks” International Journal of Advanced Computer Science and Applications(IJACSA), 14(7), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01407104

@article{Ounasser2023,
title = {Enhancing Computer-assisted Bone Fractures Diagnosis in Musculoskeletal Radiographs Based on Generative Adversarial Networks},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01407104},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01407104},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {7},
author = {Nabila Ounasser and Maryem Rhanoui and Mounia Mikram and Bouchra El Asri}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org