The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140739
PDF

Anomalous Taxi Trajectory Detection using Popular Routes in Different Traffic Periods

Author 1: Lina Xu
Author 2: Yonglong Luo
Author 3: Qingying Yu
Author 4: Xiao Zhang
Author 5: Wen Zhang
Author 6: Zhonghao Lu

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 7, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Anomalous trajectory detection is an important approach to detecting taxi fraud behaviors in urban traffic systems. The existing methods usually ignore the integration of the trajectory access location with the time and trajectory structure, which incorrectly detects normal trajectories that bypass the congested road as anomalies and ignores circuitous travel of trajectories. Therefore, this study proposes an anomalous trajectory detection algorithm using the popular routes in different traffic periods to solve this problem. First, to obtain popular routes in different time periods, this study divides the time according to the time distribution of the traffic trajectories. Second, the spatiotemporal frequency values of the nodes are obtained by combining the trajectory point moments and time span to exclude the interference of the temporal anomaly trajectory on the frequency. Finally, a gridded distance measurement method is designed to quantitatively measure the anomaly between the trajectory and the popular routes by combining the trajectory position and trajectory structure. Extensive experiments are conducted on real taxi trajectory datasets; the results show that the proposed method can effectively detect anomalous trajectories. Compared to the baseline algorithms, the proposed algorithm has a shorter running time and a significant improvement in F-Score, with the highest improvement rate of 7.9%, 5.6%, and 10.7%, respectively.

Keywords: Anomalous trajectory detection; time periods; popular routes; gridded distance

Lina Xu, Yonglong Luo, Qingying Yu, Xiao Zhang, Wen Zhang and Zhonghao Lu, “Anomalous Taxi Trajectory Detection using Popular Routes in Different Traffic Periods” International Journal of Advanced Computer Science and Applications(IJACSA), 14(7), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140739

@article{Xu2023,
title = {Anomalous Taxi Trajectory Detection using Popular Routes in Different Traffic Periods},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140739},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140739},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {7},
author = {Lina Xu and Yonglong Luo and Qingying Yu and Xiao Zhang and Wen Zhang and Zhonghao Lu}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org