The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140747
PDF

Drug Resistant Prediction Based on Plasmodium Falciparum DNA-Barcoding using Bidirectional Long Short Term Memory Method

Author 1: Lailil Muflikhah
Author 2: Nashi Widodo
Author 3: Novanto Yudistira
Author 4: Achmad Ridok

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 7, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Malaria disease mostly affects children and causes death every year. Multiple factors of the disease due to failure in treatment, including anti-malaria drug resistance. The resistance is caused by a decrease in the efficacy of the drug against Plasmodium parasites. Therefore, we proposed a computational approach using deep learning methods to predict anti-malarial drug resistance based on genetic variants of the Plasmodium falciparum through DNA barcoding. The DNA Barcode, organism identification from Plasmodium, is employed as data set for predicting the anti-malaria drug resistance. As a univariate amino acid sequence, it is transformed to numerical value data for building classifier model. It is constructed into a classifier model for prediction using Bidirectional Long Term-Short Memory (Bi-LSTM). This algorithm is extended from LSTM by two directions. In the first stage, the sequence is encoded into numerical data as input data for the method using sigmoid activation loss function. Then binary cross entropy is addressed to define the class, resistance or sensitivity. The final stage is applied by tuning hyper-parameter using Adaptive Moment Estimation optimizer to get the best performance. The experimental results show that Bi-LSTM as the proposed method achieves high performance for resistance prediction including precision, recall, and f1-score.

Keywords: Drug resistant; plasmodium falciparum; Bi-LSTM; deep learning

Lailil Muflikhah, Nashi Widodo, Novanto Yudistira and Achmad Ridok, “Drug Resistant Prediction Based on Plasmodium Falciparum DNA-Barcoding using Bidirectional Long Short Term Memory Method” International Journal of Advanced Computer Science and Applications(IJACSA), 14(7), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140747

@article{Muflikhah2023,
title = {Drug Resistant Prediction Based on Plasmodium Falciparum DNA-Barcoding using Bidirectional Long Short Term Memory Method},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140747},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140747},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {7},
author = {Lailil Muflikhah and Nashi Widodo and Novanto Yudistira and Achmad Ridok}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org