The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140750
PDF

Enhancing User Experience Via Calibration Minimization using ML Techniques

Author 1: Sarah N. AbdulKader
Author 2: Taha M. Mohamed

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 7, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Electromyogram (EMG) signals are used to recognize gestures that could be used for prosthetic-based and hands-free human computer interaction. Minimizing calibration times for users while preserving the accuracy, is one of the main challenges facing the practicality, user acceptance and spread of upper limb movements’ detection systems. This paper studies the effect of minimized user involvement, thus user calibration time and effort, on the user-independent system accuracy. It exploits time based features extracted from EMG signals. One-versus-all kernel based Support Vector Machine (SVM) and K Nearest Neighbors (KNN) are used for classification. The experiments are conducted using a dataset having five subjects performing six distinct movements. Two experiments performed, one with complete user dependence condition and the other with the partial dependence. The results show that the involvement of at least two samples, representing around 2% of sample space, increase the performance by 62.6% in case of SVM, achieving accuracy result equal to 89.6% on average; while the involvement of at least three samples, representing around 3% of sample space, cause the increase by 50.6% in case of KNN, achieving accuracy result equal to 78.2% on average. The results confirmed the great impact on system accuracy when involving only small number of user samples in the model-building process using traditional classification methods.

Keywords: EMG signals; user independence; EMG user acceptance; HCI; movement classification; calibration minimization

Sarah N. AbdulKader and Taha M. Mohamed, “Enhancing User Experience Via Calibration Minimization using ML Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 14(7), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140750

@article{AbdulKader2023,
title = {Enhancing User Experience Via Calibration Minimization using ML Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140750},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140750},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {7},
author = {Sarah N. AbdulKader and Taha M. Mohamed}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org